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SUMMARY 

For steady multi-dimensional convection, the QUICK scheme has several attractive properties. However, for 
highly convective simulation of step profiles, QUICK produces unphysical overshoots and a few oscillations, 
and this may cause serious problems in non-linear flows. Fortunately, it is possible to modify the convective 
flux by writing the ‘normalized’ convected control-volume face value as a function of the normalized adjacent 
upstream node value, developing criteria for monotonic resolution without sacrificing formal accuracy. This 
results in a non-linear functional relationship between the normalized variables, whereas standard methods 
are all linear in this sense. The resulting Simple High-Accuracy Resolution Program (SHARP) can be applied 
to steady multi-dimensional flows containing thin shear or mixing layers, shock waves and other frontal 
phenomena. This represents a significant advance in modelling highly convective flows of engineering and 
geophysical importance. SHARP is based on an explicit, conservative, control-volume flux formulation, 
equally applicable to  one-, two-, or three-dimensional elliptic, parabolic, hyperbolic or mixed-flow regimes. 
Results are given for the bench-mark purely convective oblique-step test. The monotonic SHARP solutions 
are compared with the diffusive first-order results and the non-monotonic predictions of second- and third- 
order upwinding. 

KEY WORDS SHARP simulation Third-order upwinding Monotonic differencing High convection 
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INTRODUCTION 

Successful modelling of strong convection is one of the most challenging problems in com- 
putational mechanics. If the truncation error terms in the numerical approximation contain 
second-order spatial derivatives (as in the case of first-order upwinding), simulated results are 
artificially diffusive and often grossly inaccurate. Central difference methods introduce pro- 
pagating numerical dispersion terms (odd-order derivatives) which may corrupt large regions of 
the flow with unphysical oscillations. Contrary to common belief, the spatial extent of these 
oscillations actually increases for higher-order (central) methods. Higher-order upwind schemes 
have been successful in eliminating artificial diffusion, while minimizing numerical dispersion. In 
the case of second-order upwinding,’ the leading truncation error is a (potentially oscillatory) 
third-derivative term; however, the fourth-derivative numerical dissipation is large enough to 
dampen short-wavelength components of the dispersion to some extent. Third-order upwinding, 
exemplified in the steady-state control-volume case by QUICK (Quadratic Upstream Inter- 
polation for Convective Kinematics), has a leading fourth-derivative truncation error term which 
is dissipative, but higher-order dispersion terms may still cause overshoots and a few oscillations 
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when excited by (what should be) nearly discontinuous behaviour of the convected variable.’ 
Currently, many general-purpose elliptic solvers (replacing those previously based on variations 
of essentially first-order upwinding, such as older versions of the well known TEACH code,3 for 
example) are now using either second-order ~ p w i n d i n g ~ . ~  or QUICK5-” as the basis for their 
convective transport solver. 

QUICK, in particular, has several attractive properties: no numerical diffusion (the leading 
truncation error is fourth-order ‘dissipation’ as distinct from second-order ‘diffusion’); low 
dispersion (the leading dispersion term is a small fifth derivative, strongly damped by the fourth- 
order dissipation); inherent convective stability (due to the upwinded curvature terms, even in the 
absence of physical diffusion); algorithmic simplicity (based on a conservative control-volume flux 
formulation); and computational efficiency (in terms of total ‘cost’ for a prescribed accuracy). 
QUICK also has excellent pressure prediction capabilitiy in Navier-Stokes codes; in particular, 
computed stagnation pressure remains constant in isentropic regions (as it should), whereas this is 
not the case with other convection codes.6 Some groups using ‘QUICKened’ TEACH codes 
together with TEACH’S standard tridiagonal line solver have experienced convergence problems 
with QUICK in strongly recirculating flow simulations.’’ However, this appears to be due to 
using a single sweep direction; with alternating-direction tridiagonal (or pentadiagonal) line 
sweeps, QUICK is extremely robust and reliable under all flow conditions.” Certainly, the 
explicit time-marching solution method described here presents no problems, even in the inviscid 
limit. 

QUICK’s single shortcoming is its tendency, under highly convective conditions, to produce 
overshoots and possibly some oscillations on each side of (what should be) steps in the dependent 
variable when convected at  an angle oblique (or skew) to the grid. Even in one-dimensional flow, 
QUICK produces a few oscillations upstream of a sudden jump in the convected variable, under 
high-convection conditions. By contrast, second-order upwinding does not have this defect in one 
dimension; but, as seen later, this method too produces strong overshoots in two-dimensional 
oblique-step simulations. In some applications, small overshoots and a few oscillations may be 
tolerable-merely representing inaccurate resolution of the discontinuity. More likely, however, 
non-linear processes such as steepening in shock waves or the local behaviour of a computed 
diffusion or viscosity coefficient will feed back and amplify the oscillatory error, and may lead to 
catastrophic di~ergence.’~ Current practice with codes based on QUICK seems to be to revert to 
adding artificial diffusion in an ad hoe manner in order to suppress overshoots. For example, first- 
order upwinding might be used for k and E equations, while QUICK is used for momentum and 
scalar transport’’, ’3. The penalty for this ‘patch-up’ procedure is not immediately obvious; but, 
given its poor track record, one should always be suspicious of first-order upwinding. 

Clearly a code retaining QUICK’s desirable attributes while eliminating unphysical overshoots 
and oscillations would be of great practical significance. Sharp monotonic resolution of thin shear 
layers, species density jumps, temperature discontinuities, shock waves and other frontal 
phenomena is a fundamental goal of computational fluid dynamics. The following sections of this 
paper will show how it is possible to modify the multi-dimensional QUICK scheme to achieve this 
goal while retaining QUICK’s third-order global accuracy and good stability characteristics; and, 
perhaps surprisingly, this can be done with very little additional computational cost, because the 
standard QUICK algorithm (or a slight variation thereof) is used throughout the overwhelming 
bulk of the flow domain-i.e. any (more expensive) modification is used only in thin regions 
requiring special treatment, thus representing only a small fraction of the overall number of grid 
points. 

The next section describes the normalized variable diagram ( N V D t a  plot of the locally 
normalized convected control-volume face variable with respect to the normalized adjacent 
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upstream node variable. In this plane, standard methods such as first- and second-order 
upwinding, second-order central differencing and QUICK are all represented by (different) 
straight lines. It will become clear that in order to satisfy both high accuracy and monotonicity, a 
non-linear functional relationship is necessary. The choice of this non-linear function is not 
unique. However, a simple scheme based on exponential upwinding has all the desired properties 
and is highly compatible with QUICK (both use the same grid nodes for interpolation); hence this 
is used as the basis for the resulting Simple High-Accuracy Resolution Program (SHARP). Details 
of the development of exponential upwinding are given in the second section, where it is seen that 
this non-linear scheme is also third-order accurate. A quantitative criterion is devised for deciding 
when to use the standard QUICK scheme (in ‘smooth’ regions) and when to invoke the more 
sophisticated monotonic interpolation; this quite naturally depends on the normalized curvature 
of the convected variable. Because exponential upwinding does not cover the entire range of the 
NVD, it is necessary to devise ad hoc extensions to match with QUICK at the extreme ranges; this 
is achieved via simple piecewise linear constructions, resulting in what has become known as the 
Exponential Upwinding or Linear Extrapolation Refinement (EULER). This section closes with a 
sketch of the EULER-QUICK algorithm in one dimension, for clarity. The following section 
outlines the two-dimensional algorithm in detail and shows how it can easily be extended to three- 
dimensional steady flow. Finally, results are given for the well known bench-mark two- 
dimensional pure-convection oblique-step test-probably the most severe test for any convection 
scheme. This is used for a direct comparison between classical first-order upwinding, second-order 
upwinding, QUICK and SHARP. As expected, first-order upwinding is extremely artificially 
diffusive. Rather surprisingly, second-order upwinding exhibits quite strong overshoots at some 
convection angles. QUICK gives steeper resolution of the jump region, but generates angle- 
dependent overshoots and some oscillations. By dramatic contrast, SHARP retains the steep 
resolution of QUICK but remains absolutely monotonic. Its overall characteristics seem virtually 
insensitive to flow-to-grid angle. 

NORMALIZED, VARIABLE DIAGRAM 

Dejinition of normalized variables 

Consider the variation of a convected scalar 4(x, y, z )  along a direction normal to a control- 
volume (CV) face, as shown in Figure l(a). For the CV face convecting velocity direction shown, 
QUICK involves the two adjacent node values (4D and &) together with that at the next 
upstream node (&) in modelling the convected CV face value 4f. Note that the labelling of node 
values4ownstream (D), central (C)  and upstream ( U w e p e n d s  on the normal velocity 
direction, as of course does the choice of node for &. Figure l(b) shows the same information in 
terms of the locally normalized variable 

Note particularly that, in terms of normalized variables, JD= 1 and &=O. 
For example, for QUICK, on a uniform grid, the convected CV face variable is2 

4f = $ ( 4 D +  4 C ) - Q ( 4 D - 2 4 C + 6 U ) ,  (2) 

&=+(l +&)-Q(1-2&+0) (3) 

so, in terms of normalized variables, 
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Figure 1. Node variables in the vicinity of a CV face (at dashed line): (a) original variables; (b) normalized variables 

or, more conveniently, 

QUICK 

if = 0.75 +0.75(&-0.5). (4) 

It should be clear that if (PI is a function of 4,,, bC and &, then the normalized variable &is only 
a function of & (since 4, = 1 and 6, = 0). This is the basis of the normalized variable diagram 
(NVD), which is a plot of the functional relationship between the normalized convected face value 
if and the normalized adjacent upstream node value ic. 
Linear schemes 

Equation (4) shows that, for QUICK, the normalized variable diagram is a straight line passing 
through (0.5,0.75) with a slope of 075. Other well known schemes also have linear characteristics. 
For example, first-order upwinding requires, using the present notation (which takes account of 
flow direction), zeroth-order upwind ‘interpolation’ 

4f = 4 C  ( 5 )  
or, in terms of normalized variables, simply 

first-order upwinding 

i f  = 6c. (6) 
Similarly, second-order central differencing, being independent of SGN(u,), is simply the linear 
interpolation 

4 f = w D + 4 C ) ,  (7) 
which becomes, in terms of normalized variables, 

second-order central 
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and second-order upwinding, given by linear upwind-biased extrapolation 

can be written 

second-order upwinding - -  (#) -2 f-26C. 
The linear NVD characteristics, equations (4), (6), (8) and (lo), are shown in Figure 2(a). The 

corresponding normalized interpolations are shown in Figure 2(b) for a specific value of &( <0-5). 
Note that three of the characteristics pass through the point (05, 0.75), labelled Q. First-order 
upwinding passes through the origin 0 and the point P at (1, l), but it passes well below Q. 

Characteristics passing through Q can be written 

Jf = 0.75 + S(& -0.5), (1 1) 

where S represents the slope of the line. Using the original (un-normalized) variables, these can be 
written in terms of the (upstream-weighted) curvature 

(#)f =0'5((#)D $- ~ I Z ) - ~ ~ ( ~ D - ~ ( # ) C  + (#)Uh (12) 
where C F  is the curvature factor. 

Clearly, S = 2CF + 03, and in specific cases 

QUICK 

second-order central 
CF=O S=' 2 3  

second-order upwind 

( A )  N O R M L I Z E D  VARIABLE D I A G R M .  (B) NORRJLIZED INTERPOLATIONS 
(FOR 0~ < 0.5). 

Figure 2. First-order upwinding, second-order upwinding, second-order central differencing an6 third-order upwinding 
(QUICK): (a) normalized variable diagram; (b) normalized interpolations (for &<0.5) 
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In terms of normalized variables, equation (1 2) becomes 

6, = O q 1 +  &)- CF( 1 - 26,-). (16) 

Note that, in general, any (non-linear) functional relationship between 6, and & passing through 
Q can be written in the form of equation (16) provided CF  is taken to be a function of & rather 
than a constant. Also, by making a Taylor series expansion about the CV face locations, it is not 
difficult to show that for any (in general, non-linear) characteristic 

(i) passing through Q is necessary and sufficient for second-order accuracy 
(ii) passing through Q with a slope of $ is necessary and sufficient for third-order accuracy. 

This means that any scheme based on a characteristic which can be written in the form of equation 
(16), with CF=CF(&), is at least second-order accurate; and if 

CF(O.5) = 0 1  25 tf S(0.5) = 0.75, (1 7) 

the scheme is third-order accurate. This, of course, correlates with equations (1 3)415), which show 
that the simple second-order schemes pass through Q with a slope other than?, whereas the third- 
order QUICK scheme indeed has S =i. Note that first-order upwinding cannot be written in the 
form of equation (16), since it does not pass through Q. The non-linear NVD characteristic to be 
developed in the next section will pass through Q with a slope of2, thus maintaining formal third- 
order accuracy. 

In the Appendix it is shown that linear NVD characteristics which pass through the second 
quadrant may produce unphysical oscillations in steady one-dimensional convection. This is a 
well known failing of central differencing and may also occur to some extent with QUICK under 
high-convection conditions.’ From Figure 2(a) one sees immediately that these two characteristics 
indeed pass through the second quadrant. Experience has shown that such schemes are also 
oscillatory in two-dimensional steady-flow simulations. Characteristics which pass through the 
fourth quadrant (i.e. below 0) are artificially diffusive. Thus, in order to avoid oscillations without 
being artificially diffusive, one necessary condition for the non-linear characteristic to satisfy is 
that it must pass through the origin 0. Numerical experimentation has also shown that NVD 
characteristics which pass above P are oscillatory in two dimensions (although not necessarily so 
in one dimension-second-order upwinding being the classic example). Similarly, passing below P 
gives artificially diffusive results. So another necessary condition for the non-linear characteristic 
is that it must pass through P. Behaviour of the non-linear scheme to be developed can be 
summarized for the monotonic regime (0 5 & 5 1): 

The non-linear NVD characteristic should pass through 0, P and Q, with a slope of 1 at Q. 

For &-values less than 0 or greater than 1, the characteristic should be extended in a continuous 
manner, ultimately approaching the QUICK line for extreme values. The next section outlines the 
development of a scheme which satisfies the above criteria. 

EXPONENTIAL UPWINDING OR LINEAR EXTRAPOLATION REFINEMENT 

Exponential upwinding 

Quadratic upstream interpolation is based on assumed local behaviour of the form 

q!) = a + b5 + c p ,  (18) 
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where 4 is a local spatial co-ordinate normal to the CV face, positive in the direction of the 
convecting velocity, as seen in Figure l(a). Evaluating a, b and c in terms of the local node values 
results in 

QUICK 

and, of course, setting <=Ax/2 results in equation (2) for 4f. 

based on an assumed (upstream-weighted) exponential of the form 
Now consider an entirely different type of interpolation through the same three node values, 

4(4) = A + B exp(C4). (20) 

Evaluating the three parameters in terms of node values leads to 

4(0) = &= A + B, 

4( -Ax) = &, = A + B ePcAx, 

 AX) = 4 D  = A + B eCA", 

from which it is easily found that 

or, in terms of normalized variables, 

4LXT3-G 
1-22, 6, = 

with no ambiguity of sign on the square root. This represents the desired exponential upwinding 
(EU) characteristic for the normalized variable diagram. Note that it is defined only in fhe 
monotonic regime (0 I &I 1). There is an indeterminacy at 6, = 0.5; but it is easy to show, using 
L'Hbpital's rule, that 

&(0.5) =0-75. (27) 

Similarly, straightforward differentiation results in 

(5) =S(EU)=0.75 at &=0.5, 
a4c EU 

showing that exponential upwinding is tangent to the QUICK line at &=0.5. This means, of 
course, that exponential upwinding is third-order accurate. The exponential upwinding character- 
istic is shown in Figure 3(a) in relation to QUICK (dashed), while Figure 3(b) shows the 
corresponding normalized EU and QUICK interpolations for a small positive value of iC with the 
corresponding $f values shown in Figure 3(a). 
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( A )  NORRALIZED VARIABLE DIAGRAM. (R) NORMALIZED INTERPOLATIONS. 

Figure 3. Exponential upwinding (solid curves) shown in relation to QUICK (dashed): (a) normalized variable diagram; 
(b) normalized interpolations 

ModiJicution criterion 

Note that the EU curve lies quite close to QUICK over a fairly wide range near &-0.5. This 
suggests a very simple modification strategy for deciding whether to use the basic QUICK scheme 
or the more sophisticated interpolation: 

w 

if 10.5 - $,-I i const, use QUICK, (29) 

where from Figure 3(a) a value of const =0.15 might be considered reasonable. Multiplying by 2, 
this becomes 

if I 1 - 2& 10.3, use QUICK, (30) 

if Itbu-2tb,+tbD11031tbD-tb"I, use QUICK. (31) 

or more directly, when written in terms of un-normalized variables, 

Since the left-hand side of this equation is proportional to the curvature (normal to the CV face) of 
the convected variable, the modification criterion is a quantitative statement of the desire to use 
QUICK in 'smooth' (i.e. small-curvature) regions of the flow domain. This will be the case in the 
bulk of the flow, since high curvature (rapid change in gradient) occurs only in thin regions 
involving a small number of grid points. Thus, although exponential upwinding is more expensive 
than QUICK, it is only used in a small fraction of the computational domain (if at all), so that the 
overall strategy is extremely cost-effective. 

Non-monotonic regime 

Since exponential upwinding is onl-y availableLn the monotonic regime, the question remains as 
to the best procedure to adopt for Cpc2 1 and CpC<O. For Cpc above 1, a simple and apparently 
robust strategy is to use the continuous extension - -  - 

Cpf=Cpc for lsCpCs 1-5, (32) 

returning (again without loss of continuity) to QUICK at &> 1.5. Note that, although this 
portion of the overall non-linear NVD characteristic happens to coincide with that of first-order 
upwinding, it does not degrade the order of the overall algorithm-which is determined solely by 
equations (27) and (28). The whole concept of 'order' based on Taylor series only has meaning for 
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smooth behaviour near &-+0.5 (i.e. vanishing curvature). Statements such as those often made in 
relation to TVD schemes24 (that such schemes are only first-order accurate near extrema: &SO 
or 2 1 in the present notation) are totally meaningless and can be quite misleading. What is 
actually meant is that, in the present notation, &=& for & S O  and &2 1, which happens to 
coincide with the first-order upwinding characteristic in the non-monotonic regime, but not 
(necessarily) near &-+O5. 

The negative-& regime requires somewhat more care in designing an extension from 
exponential upwinding, which ends at (0,O). A characteristic which rejoins QUICK at some finite 
negative &-value seems desirable; this could be done with a straight-line characteristic through 
(0,O) with a slope less than $. However, it is important to avoid a certain critical point on the 
QUICK characteristic (at &= -J(3/2) ) ,  since, as shown in the Appendix, traversing this point 
on the QUICK line could lead to unphysical oscillations under certain circumstances. It is thus 
better to rejoin the QUICK line below the critical point. This is adequately accomplished by the 
ad hoc straight-line characteristic 

&=& for - I I & I O  (33) 

continuing along the QUICK line for JC I - 1. The complete composite NVD characteristic is 
shown in Figure 4, representing an Exponential Upwinding or Linear Extrapolation Refinement 
of QUICK. 

The E ULE R-Q UICK algorithm 

The one-dimensional algorithm is summarized here for reference for each CV face: 

(i) 
(ii) 
(iii) 

Designate upstream and downstream nodes on the basis of SGN(u,). 
If l&,-&l< lo-’ (say), use QUICK, otherwise 
Check if inequality (31) is satisfied (this will account for the bulk of the flow field). 

/FIRST 

-1 EXPONENTIAL 

Figure 4. Composite NVD characteristic for the EULER-QUICK scheme 
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If not, compute &=(&-&)/(+D-+u) and find $f by 
QUICK, equation (4), if &I - 1 or 6,2 1.5, or if 0.35 I & 5 0.65, 
&=0.375& if - 1 <&SO, 
exponential upwinding, * equation (26), for 0 < & <0.35 and for 0.65 < 6, 
if=& for 1 <&< 1.5. 
Then reconstruct the (un-normalized) face value df = 4" +(4D- &)Jf. 

1, or 

In this way the convective flux at the left face can be computed as 

CFLUXL(i)=CXL(i)*4,, (34) 

where CXL(i) = u,(i)At/Ax is the local normal velocity component Courant number at the left face 
for CV(1'). Because of the conservative CV formulation, the right-face flux at CV(i) is just the left- 
face flux at CV(i + l), regardless of velocity direction. The explicit update algorithm for pure 
convection then becomes, quite simply, 

& + l =  &+CFLUXL(i)-CFLUXL(i+ 1). (35) 
In the steady state, of course, &'+'=&, so that the FLUX terms must balance. Diffusive flux 
terms are treated in an analogous fashion (using DXL = reAt/Ax2, r being a diffusion coefficient 
or viscosity): 

DFLUXL(i) = DXL(I) * (4i- 4i- (36) 

involving the simple linear difference across the left face, which is consistent with the third-order 
treatment of the convective fluxes2 Control-volume-averaged source terms can be added if 
appropriate. 

MULTI-DIMENSIONAL ALGORITHM: SHARP 

Two-dimensional Q U I C K  scheme 

Figure 5 shows a two-dimensional control volume, with attention focused on convection across 
the left face. In the situation shown, ul is positive to the right, so for a control volume centred at 
node (i, j) the following designation of upstream and downstream variables results, in the direction 
normal to the face: 

&=4(i, j) ,  4c=4( i -  1,.h 4"=4(i-ZA for u,>O; (37) 

(38) 

and the upstream-weighted transverse nodes are 

= 4(i - 1, j + l), 4B = b(i - 1, j - 1) for u, > 0. 

It should be clear which nodes would be involved for u, <O. 

is (for u,>O) 
For the basic two-dimensional QUICK scheme,25 the convected value averaged at the left face 

41 = t ( 4 D  + 4 C ) - i ( d ) D -  2 6 C  + 4") + h ( & - 2 4 C  + 4E3h (39) 

which includes the linear interpolation term, the upstream normal curvature term and a small 
term representing the effect of (upstream-biased) transverse curvature in computing the face 
average. Note that the first two terms are identical with the one-dimensional formula, equation (2). 
Thus one possible strategy for the two-dimensional SHARP is to follow the one-dimensional 
algorithm, steps (i)+ix) above, for each left face, and then simply add the appropriate transverse 
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Figure 5. Two-dimensional control volume showing nodes involved in estimating the average left-face value for u, > 0 

curvature term (depending in the sign of ul); a similar procedure is used for the bottom faces. One 
needs to store left-face (convective plus diffusive) fluxes 

FLUXL(i,j)=CXL(i,j).4,-DXL(i,j).[4(i,j)-4(i-l,j)] (40) 

and bottom-face fluxes 

FLUXB(i,j)=CYB(i,j).4,-DYB(i,j).[4(i,j)-4(i,j-l)]. (41) 
The explicit update algorithm is then extremely simple, using an overwriting assignment statement 

set: 4(i, j) = &(i,j) + At S* ( i ,  j )  
+FLUXL(i,j)-FLUXL(i+ 1,j) 

+FLUXB(i,j)-FLUXB(i,j+l), (42) 

where S* is the CV-averaged source term. Note that, in terms of storage requirements, it is 
necessary to store two flux arrays for each transport variable. 
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Curvature-based algorithm 

write for the average left-face convected value (suppressing j and k indices, for convenience) 
An alternative strategy, that can be used for one-, two-, or three-dimensional simulations, is to 

d l  =+(& + 4 i -  CF - CURVN+&(CURVTY +CURVTZ), (43) 

where CURVTY and CURVTZ are the respective upstream-weighted transverse curvature terms 
in the other co-ordinate directions, and the upstream-biased normal curvature can be written 

CURVN=+($i+ 1 - 4;- + i -  1 + 4;- Z)-+SGN(ur).($i+ 1 - 34i+ 34i- 1 - 4i- 2), (44) 

which takes account of the velocity direction automatically. For the standard QUICK algorithm, 
of course, the normal curvature factor, CF in equation (43), is a constant (=&). The explicit 
SHARP algorithm can be implemented simply by writing, from equation (16), 

which is shown in Figure 6, along with the non-monotonic extensions, corresponding to the 
complete NVD characteristic of Figure 4. 

Again the algorithm begins by computing I &, - 4" I and going immediately to QUICK if this is 
less than a specified small number. If not, one computes & in the usual way and then goes to 
algebraic expressions representing the behaviour shown in Figure 6 for CF(&-) as follows: - 
for & < - I  or 4,21.5, CF=0.125; (46) - 
for - 1 < & < O ,  CF=(0~5+0~125&)/(1-2&); 

for 1 < & < 1.5, 

for 0.3 I &I 07,  use the quadratic approximation 

- 
CF=+(&- 1)/(2& 1); 

(47) 

(48) 

CF = 0.1 25 -0.2609(& - 1.5) + 0.1 361 3(& -0.5)'; (49) 

Figure 6. Normal curvature factor CF as a function of the normalized upstream node value 6, for the EULER-QUICK 
scheme (corresponding to Figure 4) 
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and finally, for 0 < JC < 0.3 and 0.7 < & < 1, use the exact exponential upwinding formula, 
combining equations (26) and (45), 

It should be clear that most of the grid points will be in the smooth region (&-+0.5) and thus will 
involve equation (49). This empirical formula is graphically indistinguishable from the exact EU 
curve in this region. A less expensive strategy uses the following approximate formulae, in addition 
to equation (46): 

In this case most grid points will involve the simple linear formula given in equation (53). Note that 
CF =+ when &=$, thus maintaining third-order accuracy even in this simple approximate 
scheme. The main difference between equations (47)-(50) and equations (51H54) is that in the 
latter case the monotonic extensions are approximated by straight lines for CF(&) rather than by 
segments of hyperbolae; since this is an ad hoc procedure in either case, the exact shape of these 
extensions is immaterial, provided they revert to the QUICK value (CF=$) in a reasonable 
manner (and avoid the critical point). 

Extension to three dimensions 

The three-dimensional algorithm parallels the two-dimensional version, simply adding the 
upstream-biased transverse curvature for the third direction and then setting up (convective plus 
diffusive) fluxes for ‘left’ (L), ‘bottom’ (B) and ‘far’ (F) faces of each CV cell. The explicit update then 
becomes 

set: d(i,j, k)=c) ( i , j ,  k ) + A t S * ( i , j , k )  
+FLUXL(i,j, k)-FLUXL(i+ l , j ,  k )  
+FLUXB(i,j, k)-FLUXB(i,j+ 1 ,  k )  
+FLUXF(i,j, k)-FLUXF(i,j, k +  I ) ,  (55 )  

where, as usual, flux consistency is guaranteed by the control-volume formulation; e.g. the ‘near’ 
face flux FLUXN (i,j, k )  has been replaced by FLUXF(i,j, k + 1). In the three-dimensional case, of 
course, it is necessary to store three flux arrays for each transport variable. 

Numericaf boundary conditions 

As a general principle, QUICK boundary condition treatment is used;25 i.e. quadratic 
extrapolation normal to the boundary to set up external pseudo-node values, using the given 
physical conditions together with enough interior node values to perform the extrapolation. This 
works well for all transport variables unless there is a discontinuity oblique to the grid very close 
to the boundary. In such a case the classic solution of local mesh refinement can be used. 
Alternatively, other high-resolution forms of local behaviour can be developed on a case-by-case 
basis. For example, boundary layer flow with a no-slip condition and strong pressure gradient can 
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be modelled on a relatively coarse grid in a manner compatible with QUlCK (and SHARP) by 
assuming a local behaviour normal to the wall such as 

u = c ,  y""+C,y, (56) 

i.e. a power-law-plus-linear profile with an assumed value of n. This is really a three-point 
interpolation since the condition u(O)=O has already been assumed; it would replace the usual 
(three-point) quadratic variation (used in QUICK) 

u = c , y + c 2 y 2 ,  (57) 
again assuming u(0) = 0. In each case the coefficients are computed using two internal node values 
normal to the wall. Equation (56) allows much more rapid variation in the CV cell adjacent to the 
wall; it can be used in the same spirit as logarithmic wall f~nc t ions .~  Naturally, details regarding 
convective and diffusive fluxes need to be worked out in individual cases, but this is a 
straightforward matter. 

At inflow boundaries it is sometimes convenient to set up two external pseudo-nodes so that the 
usual (internal) QUICK or SHARP algorithm can be used directly. Figure 7 shows a situation in 
which dRC is given at an inflow boundary. Local quadratic behaviour in terms of the distance from 
the first interior node implies 

thus 

Solving for $2 gives 

and, since for a quadratic function the third difference is zero, (PI is given by 

@BC @ 3  I 

Figure 7. Numerical boundary conditions at an inflow boundary 
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For outflow conditions one may assume zero local curvature in the flow direction unless other 
physical conditions are specified. This is clearly not as restrictive as zero local gradient and may 
allow the use of smaller computational domains for a given accuracy. 

Time-step restrictions 

If one makes a classical von Neumann analysis of the (one-dimensional) QUICK scheme, 
assuming unsteady convection and diffusion in an infinite domain, the resulting time-step 
restrictions are rather stringent.26 In fact the convection-controlled restriction is formally the 
same as the simple forward timelcentral space r e q ~ i r e m e n t ~ ~  on the Courant number (c = uAt/Ax), 

where PA = uAx/T is the grid Peclet number (or Reynolds number). This would imply, of course, 
that purely convective flow (PA-co) could not be simulated by the explicit QUTCK scheme. 
Fortunately, the formal von Neumann analysis does not apply to steady-state algorithms on a 
finite grid. In particular, since the instability indicated by violating equation (62) is at the long- 
wavelength end of the Fourier spectrum, the imposition of a long-wavelength cut-off (correspond- 
ing to a finite grid) results in a much less restrictive condition.27 This can be written in an accurate 
simplified form as2’ 

9 -2 
.L I L  

C < - + -  
P A  2N2’ 

where NAx=A*, the cut-off wavelength, from which it can be seen that even in the ‘inviscid’ limit 
(P,+co) there is always a non-zero time step available for explicit solution of the QUICK 
algorithm on a finite grid. Even this can be violated when using time-marching toward a steady- 
state solution, because any unstable modes tend to be suppressed by the steady-state boundary 
conditions. Finally, the non-linearity of the SHARP scheme allows further violation of formal 
time-step restrictions. Numerical experimentation has shown that if the local component Courant 
numbers do not exceed about 0.2, instabilities do not develop; this is an order of magnitude larger 
than the value suggested by equation (63) in the test problems considered here. 

Variable grids 

For clarity, the development of SHARP has been based on the assumption of a uniform grid in 
each co-ordinate direction. Various levels of generalization are possible. For example, in two 
dimensions it is a simple matter to extend the formulae to a uniform rectangular grid, Ax =const, 
Ay=const#Ax; and similarly in three dimensions. This is merely reflected in the definition of 
individual component Courant numbers (and diffusion parameters). The next level of gen- 
eralization involves locally expanding (or contracting) rectangular grids, with ‘expansion ratios’ 
such as r,  = Axi+ ,/Axi, etc. In principle, one could set up analogous formulae for & incorporating 
r,, ry (and rz in three dimensions), as has been done for QUICK2*25 using a different notation. 
However, it turns out that, for QUICK, simply using the constant-grid-spacing formulae on a 
variable grid results in negligible errors, provided the adjacent mesh width ratios lie within the 
range 0.8 - 1.25, i.e. up to approximately a 125% local expansion ratio.4 This gives a wide range of 
flexibility in designing variable rectangular meshes without going to the added complexity of 
variable-grid formulae. Since this conclusion was based on a Taylor series expan_sion about 
control-volume faces, and is therefore related to QUICK’S NVD behaviour near & = 0.5, the 
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same conclusion must be reached regarding SHARP. The extension to non-rectangular quadri- 
lateral grids is not yet documented; however, it is reasonable to speculate that 'mild' distortion 
would not result in significant errors, even though the formal order of accuracy is reduced. 

TEST PROBLEM RESULTS 

The oblique-step test 

Figure 8 shows the well known bench-mark test problem consisting of pure convection of an 
upstream transverse step profile in a scalar field imposed at the inflow boundaries of a (square) 
computational domain, in this case 

AX = Ay = A. (64) 

There are two additional rows of pseudo-nodes upstream of the inflow boundaries, and one 
additional set downstream. The convecting velocity is of constant magnitude and flows at the 
same angle 0, oblique to the grid, everywhere. The location of the boundary step is chosen so that 
the exact convected step passes through the midpoint of the grid, for reference. Note that 4 = 0 5  
along the step itself, whereas 4 = 1 everywhere above and 4 = O  below, as indicated. 

For 0 =45" the exact solution is shown in orthographic projection in Figure 9. Note that this 
particular computer plot routine interpolates linearly between specified grid point values. 
Figure 10 gives the results for 8 = 45" using classical first-order upwinding for all CV face fluxes. 
Clearly this is grossly in error owing to the artificial cross-grid diffusion inherent in this method. A 
quantitative indication of the error is given by 

E R R o R = C  I 4computed-4exact I  (65) 

summed over all computed (interior) grid points; the magnitude is noted in the figure captions in 
each case. Figure 11 gives the corresponding results for second-order upwinding. Although the 
main rise is considerably steeper than first-order, and the ERROR much smaller, the most obvious 
feature is the (antisymmetrical) pattern of overshoots-of considerable magnitude! This is a 
serious problem, and one that needs to be addressed by research groups propounding the use of 
second-order upwinding as a general-purpose convection In fact second-order upwind- 
ing at this angle gives larger overshoots than QUICK, as seen in Figure 12. The QUICK and 
second-order upwind results are qualitatively similar; but note that QUICK'S step resolution is 
considerably steeper, and compare the quantitative ERROR magnitudes. Finally, for this 45" 

Q = 0 . 5 l  

0 

Q S l  

( 0  = 0 . 5 )  

I 
I _ _ _ _ _ _ _  J 

Q Z O  

Tim 

I 

(B) EXACT SOLUTION AND GRID ( A )  BOUNDARY CONDITIONS AND 
CONVECTING VELOCITY. DISTRIBUTION. 

Figure 8. The oblique-step test: (a) boundary conditions and convecting velocity; (b) exact solution and grid distribution 
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Figure 9. Three-dimensional representation of q5(x, y) for the exact solution of the oblique-step test for 0=4Y 

Figure 10. Oblique-step test results for first-order upwinding, 8=45"; ERROR = 68.2 
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Figure 1 1 .  Oblique-step test results for second-order upwinding, 0=45"; ERROR = 24.4 

Figure 12. Oblique-step test results for third-order upwinding (QUICK), 0=45"; ERROR = 16.6 
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Figure 13. Oblique-step test results for the simple high-accuracy resolution program (SHARP), 0=45"; ERROR = 16.0 

angle, Figure 13 gives the SHARP results-ssentially the same steep resolution as QUICK, but 
with the overshoots 'clipped off' (and smoothed) to give absolutely monotonic simulation. Note 
the drop in ERROR relative to QUICK. 

Of course 45" is a special angle (actually the worst case for first-order upwinding in terms of 
ERROR magnitude), so two other angles will be considered: 

8 = tan-' (3 )  M 34" 

8 =tan- (4) = 56". 

(66) 

(67) 

and 

The results-again for the exact solution, first-order upwinding, second-order upwinding, 
QUICK and SHARP-are shown in Figures 14-18 respectively for f3=34" and in Figures 19-23 
respectively for 8 = 56". In each case first-order upwinding is artificially diffusive, second-order 
upwinding and QUICK are oscillatory with much lower ERROR, but SHARP always gives 
uniformly steep and monotonic results, essentially independent of flow-to-grid angle. 

DISCUSSION AND FORECAST 

SHARP represents a new generation of multi-dimensional monotonic convective solvers of high 
formal accuracy (in this case third-order). Other similar schemes can be constructed by devising 
alternate non-linear characteristics in the normalized variable diagram. For example, Gaskell and 
Lau's Sharp Monotonic Algorithm for Realistic Transport (SMART) is based on a piecewise linear 
characteristic2* consisting of the QUICK line for the bulk of the monotonic range in &, but 
deviating via ad hoc straight-line segments to pass through (0,O) and (1, 1) in the NVD. SMART 
and SHARP give virtually identical results for critical steady two-dimensional pure-convection 
problems such as the oblique-step test. These schemes are similar in some respects to certain types 
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Figure 14. Exact solution for 0=34" 

Figure 15. Oblique-step test results for first-order upwinding, B= 34"; ERROR =63.8 
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Figure 16. Oblique-step test results for second-order upwinding, 0 = 34"; ERROR =28.7 



1312 B. P. LEONARD 

Figure 18. Oblique-step test results for SHARP, 0 = 3 4 ;  ERROR= 19.4 

Figure 19. Exact solution for 8=56" 
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Figure 20. Oblique-step test results for first-order upwinding, O =  56"; ERROR =63.8 
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Figure 21. Oblique-step test results for second-order upwinding, f3= 56"; ERROR =28.7 
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Figure 22. Oblique-step test results for QUICK, O =  56"; ERROR =23.4 

Figure 23. Oblique-step test results for SHARP, 8=56"; ERROR= 19.4 
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of flux limiter and so-called 'TVD schemes developed for simulating shock phenomena in inviscid 
compressible flows. In fact there is a one-to-one correspondence between the normalized variable 
diagram and the flux limiter versus gradient ratio diagram discussed, for example, by S ~ e b y . ' ~  It is 
not difficult to show that the flux limiter factor, FLF (Sweby's cp), is related to the normalized 
variables used here by 

(68) i f  - i c  

f(l - i C )  

FLF = 

and that the gradient ratio r is given by 

Note that the important region near 6, = 1 is b_anished to large (positive or negative) r-values in 
Sweby's diagram, whereas the behaviour of the 4f (&) characteristic is immediately obvious in the 
NVD used here. In terms of un-normalized variables, equation (68) is simply 

4f - 4 c  
4s"" - 4c ' 

FLF = 

where the numerator is the difference between the modelled face value 4f and first-order 
upwinding (pc, and the denominator is the difference between second-order central differencing 
@EN =f(&+ &) and first-order upwinding. 

In unsteady flows one can obtain the central difference time-averaged (Lax-Wendroff) CV face 
value from 

6,"" = 4;EN - c(@"" - &), (71) 

where c is the Courant number. If one makes the same (second-order time-accurate) assumption 
for the non-linear face value, averaged over time, 

6f = 4f - 44f - 4 C ) ?  (72) 

then equation (70) can be written, cancelling the factor 1 -c, as 

& - 4 C  
4kW - 4 C '  

FLF = (73) 

which, of course, is the basic definition of the flux limiter factor. This means that many of the flux 
limiter schemes previously developed for unsteady (one-dimensional) gas dynamics will be 
applicable to steady multi-dimensional highly convective flows as well, using the conservative 
control-volume formulation described here. 

It now appears possible to obtain much better resolution of discontinuities by using non-linear 
schemes of even higher-order accuracy, in the sense of using more than three grid points (normal 
to control-volume faces) in estimating local fluxes. Whether this is based on flux-limited higher- 
order polynomial schemes or more sophisticated forms of (non-polynomial) interpolation, the 
strategy of using a robust scheme, such as third-order upwinding, in the bulk of the flow domain 
and switching to the (presumably) more costly computation only where necessary (in thin layers) 
will remain highly cost-effective. 



1316 B. P. LEONARD 

- 
@f 

0 1  

U - 
-K3 C 

0 -K 

(A)  OSCILLATORY MODE VALUES. (B) LOCATION OF c.p. 

Figure 24. Oscillatory critical point for QUICK: (a) node values; (b) NVD location 

APPENDIX 

Consider a linear characteristic in the NVD of the form 

& = s JC + 1. (74) 
In one-dimensional simulations, if oscillations occur, they will take the form of an alternating 
geometric series, decaying upstream: 4i= 1, bi- = - K ,  $ i - 2  = K 2 ,  etc. Let dD= 1; then 
&= - K ,  (bu = K Z .  The corresponding normalized variable is 

where the 'star' signifies a critical value of & (corresponding to the oscillatory behaviour). The 
accompanying face value is 4: = 0, as seen in Figure 24(a); thus the normalized face value becomes 

This gives a quadratic equation for K ,  the appropriate root being 

s- Js2-41( 1 - s - I )  K=- - 
2(1-S-I) 

For example, for QUICK (S=0.75, I =0375)  

K (QUICK)= 2J3 - 3 =0464l 

and the critical point is given by 

4; (QUICK) = J(3/2) = - 0.8660 

and - 
4F(QUICK)= - $ ( J 3 -  I ) =  -0.2745 

as shown in Figure 24(b). 

(77) 
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Note that for second-order central differencing ( S =  0.5, I =05), K = 1, implying undamped 
oscillation. Also, if the characteristic passes through O(I=O), then K e0 i.e. perfect step 
resolution. Finally, if Z < O  (i.e. the characteristic passes through the fourth quadrant), K is 
negative, implying a non-oscillatory geometric decay or artificial diffusion. It should be clear that 
any linear characteristic passing through the second quadrant ( I  > 0) will have a corresponding 
critical point in the third quadrant. More general results concerning non-linear characteristics can 
be determined. In particular, any (in general, non-linear) characteristic passing through the second 
quadrant will have a potentially oscillatory critical point in the third quadrant. This can be seen by 
imagining a local first-order Taylor expansion of the form of equation (74) about candidate critical 
points; provided the trajectory enters the third quadrant from the second, there will always be 
values of S and I satisfying equations (75), (76) and (77) at some point on the trajectory in the third 
quadrant. Trajectories entering the third quadrant through 0 or the fourth quadrant may also 
have critical points, as would the scheme shown dashed in Figure 24(b), which rejoins the QUICK 
scheme above its critical point. Clearly the most satisfactory design is to pass through 0, staying 
low enough to avoid potential critical points. This is the case with the ad hoc linear extension 
chosen in constructing the EULER-QUICK scheme. 
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